Cover Image
close this bookThe Water Buffalo: New Prospects For An Underutilized Animal (1984)
source ref: b21wae.htm
View the documentPanel on Water Buffalo
View the documentPreface
View the document1 Introduction
View the document2 Meat
View the document3 Milk
View the document4 Work
View the document5 Adaptability and Environmental Tolerance
View the document6 Nutrition
View the document7 Health
View the document8 Reproduction
View the document9 Management
View the document10 Environmental Effects
View the document11 Recommendations and Research Needs
close this folderAppendixes
View the documentAppendix A
View the documentAppendix B
View the documentAppendix C

1 Introduction

The domesticated water buffalo Bubalus bubalis numbers at least 130 million-one-ninth the number of cattle in the world. It is estimated that between 1961 and 1981 the world's buffalo population increased by 11 percent, keeping pace with the percentage increase in the cattle population.

Although there are some pedigreed water buffaloes, most are nondescript animals that have not been selected or bred for productivity. There are two general types-the Swamp buffalo and the River buffalo.

Swamp buffaloes are slate gray, droopy necked, and ox-like, with massive backswept horns that make them favorite subjects for postcards and wooden statuettes in the Far East. They are found from the Philippines to as far west as India. They wallow in any water or mud puddle they can find or make. Primarily employed as a work animal, the Swamp buffalo is also used for meat but almost never for milk production.

River buffaloes are found farther west, from India to Egypt and Europe. Usually black or dark gray, with tightly coiled or drooping straight horns, they prefer to wallow in clean water. River buffaloes produce much more milk than Swamp buffaloes. They are the dairy type of water buffalo. In India, River buffaloes play an important role in the rural economy as suppliers of milk and draft power. River buffaloes make up about 35 percent of India's milk animals (other than goats) but produce almost 70 percent of its milk. Buffalo butterfat is the major source of cooking oil (ghee) in some Asian countries, including India and Pakistan.

Although water buffaloes are bovine creatures that somewhat resemble cattle, they are genetically further removed from cattle than are the North American bison (improperly called buffalo) whose massive forequarters, shaggy mane, and small hindquarters are unlike those of cattle. While bison can be bred with cattle to produce hybrids,( This is not, however, very successful, the male progeny (at least of the F 1 generation) are sterile).there is no well-documented case of a mating between water buffalo and cattle that has produced progeny.

Parts of Asia and even Europe have depended on water buffaloes for centuries. Their crescent horns, coarse skin, wide muzzles, and low-carried heads are represented on seals struck 5,000 years ago in the Indus Valley, suggesting that the animal had already been domesticated in the area that is now India and Pakistan. Although buffaloes were in use in China 4,000 years ago, they are not mentioned in the literature or seen in the art of the ancient Egyptians, Romans, or Greeks, to whom they were apparently unknown. It was not until about 600 A.D. that Arabs brought the animal from Mesopotamia and began moving it westward into the Near East (modern Syria, Israel, and Turkey). Water buffaloes were later introduced to Europe by pilgrims and crusaders returning from the Holy Land in the Middle Ages. In Italy buffaloes adapted to the area of the Pontine Marshes southeast of Rome and the area south of Naples. They also became established in Hungary, Romania, Yugoslavia, Greece, and Bulgaria and have remained there ever since.

Villagers in medieval Egypt adopted the water buffalo, which has since become the most important domestic animal in modern Egypt. Indeed, during the last 50 years, their buffalo population has doubled to over 2 million head. The animals now supply Egypt with more meat-much of it in the form of tender "veal"-than any other domestic animal. They also provide milk, cooking oil, and cheese.

Other areas have capitalized on the water buffalo's promise only in very recent times. For instance, small lots of the animals brought to Brazil (from Italy, India, and elsewhere) during the last 84 years have reproduced so well that they now total about 400,000 head and are still increasing, especially in the lower Amazon region. Buffalo meat and milk are now sold widely in Amazon towns and villages; the meat sells for the same price as beef. Nearby countries have also become familiar with the water buffalo. Trinidad imported several breeds from India between 1905 and 1908, while Venezuela, Colombia, and Guyana have been importing them in recent decades. During the 1970s Costa Rica, Ecuador, Cayenne, Panama, Suriname, and Guyana introduced small herds. By 1979 the buffalo in Venezuela numbered more than 7,000 head.

Across the Pacific, the new nation of Papua New Guinea has found the water buffalo well suited to its difficult environment. For 9 years the government has attempted to run cattle on the Sepik and Ramu Plains on Papua New Guinea's north coast, where the temperatures are high and the forage of poor quality. But the cattle remain thin and underweight. In the 1960s animal scientists began evaluating water buffaloes already living in Papua New Guinea and, encouraged by the results, introduced additional buffaloes from Australia. These have performed remarkably well, producing greater numbers of calves and much more meat than the cattle in the region. The buffaloes appear to maintain appetite despite the heat and humidity, whereas cattle do not. The government of Papua New Guinea has since imported more water buffaloes and today has thriving herds totaling almost 3,500 head.

The United States has been slow to recognize the water buffalo's potential, but the first herd (50 head) ever imported for commercial farming arrived in February 1978.(Air-freighted from the wilds of Guam, the U.S. island possession on the western Pacific, by panel member Tony Leonards. Prior to that time (in 1974), four head of water buffalo were imported to the Department of Animal science' university of Florida, for study. The only other water buffaloes in North America were a few animals in zoos.) The humble water buffalo, normally considered fit only for the steamy rice fields of Asia, is now proving itself on farm fields in Florida and Louisiana. As a result, interest in the animal is on the rise in U.S. university and farm circles.

From experience accumulated in Asia, Egypt, South America, Papua New Guinea, Australia, the United States, and elsewhere, animal scientists now perceive that many general impressions about the water buffalo are incorrect.

For example, it is widely believed that the water buffalo is mean and vicious. Encyclopedias reinforce this perception, and in the Western world it is the prevalent impression of the animal. The truth is, however, that unless wounded or severely stressed, the domesticated water buffalo is one of the gentlest of all farm animals. Despite an intimidating appearance, it is more like a household pet-sociable, gentle, and serene. In rural Asia the care of water buffaloes is often fumed over to small boys and girls aged about four to nine. The children spend their days with their family's gentle buffalo, riding it to water, washing it down, waiting while it rolls and wallows, and then riding it to some source of forage, perhaps a grassy field or thicket. It is not uncommon to see a buffalo patiently feeding, with a young friend stretched prone on its broad gray back, asleep.

Perhaps the notion about the viciousness of water buffaloes stems from confusing them with the mean-tempered African buffalo Syncerus caffer, actually a distant relative with which they will not interbreed and which is classified in a different genus.

Ferocity is the most blatant misconception concerning the water buffalo, although other fallacies are widely reported as well.

One generally held belief is that water buffaloes can be raised only near water. Actually, buffaloes love to wallow, but they grow and reproduce normally without it, although in hot climates they must have shade available.

Another belief is that the water buffalo is exclusively a tropical animal. River-type buffaloes, however, have been used to pull snow plows during Bulgarian winters. They are found in Italy (over 100,000 head), Albania, Yugoslavia, Greece, Turkey, the Georgia and Azerbaijan areas of the Soviet Union (almost 500,000 head) and other temperate-zone regions as well. They are also found in cold, mountainous areas of Pakistan, Afghanistan, and Nepal.


World Distribution of Water Buffaloes

Yet another misconception is that the water buffalo is just a poor man's beast of burden. In addition to providing fine lean meat, buffaloes in fact provide rich milk. Mozzarella cheese, one of the most popular in Europe, comes from the buffaloes in Italy. Buffalo milk has a higher content of both butterfat and nonfat solids than cow's milk does. It therefore often brings higher prices than cow's milk. Throughout much of India it is in such demand that cow's milk is sometimes hard to sell.

Many of the misconceptions generally held about buffaloes are based on little data and much prejudice. For instance, it is widely believed that water buffalo meat is tough and less desirable than beef. However, when the animals are raised for meat, buffalo steaks are lean, as tender as beef, and in appearance it is difficult to distinguish the two. In taste-preference tests at the University of Queensland, buffalo steaks were preferred over those from Angus and Hereford cattle. Tests conducted in Trinidad, Venezuela, the United States, and Malaysia produced similar results.

Australia has shipped water buffalo meat to Hong Kong, the United States, Germany, and Scandinavia. Buffalo meat is now available in stores in Australia's Northern Territory, where demand exceeds supply. It sells at competitive prices and is particularly sought for barbecues and the famous Australian meat pie. In the Philippines, two-thirds of the meat consumed in homes and restaurants is actually water buffalo, a fact that many Filipinos do not realize.

Compared with cattle,waterbuffaloes apparently have an efficient digestive system, one which extracts nourishment from forage so coarse and poor that cattle do not thrive on it. Thin cattle are commonly seen in Asia and northern Australia, for example, but it's rare to see a protruding rib on a buffalo, even though it uses the same source of feed.

In Asia, the Middle East, and Europe, water buffaloes live on coarse vegetation on the marginal land traditionally left to the peasants. They help make human survival possible. An old Chinese woman in Taiwan once told panelist W. Ross Cockrill: "To my family the buffalo is more important than I am. When I die, they'll weep for me; but if our buffalo dies, they may starve."

A better understanding of the water buffalo could be invaluable to many developing nations. In particular, improved production of water buffalo meat offers hope for helping feed India, the second most populous nation on earth. Although India for religious reasons forbids the slaughter of cows, it has no prohibitions regarding slaughter of water buffaloes or the consumption of buffalo meat.

Most developing countries are in the tropics, and the water buffalo is inherently a tropical animal. It is comfortable in hot, humid environments. In the Amazon, for example, buffaloes are now common on the landscape and may even replace cattle completely.

Tropical countries have more serious disease problems than temperate countries do. Although susceptible to most cattle diseases, the water buffalo seems to resist ticks and often appears to be more resistant to some of the most devastating plagues that make cattle raising risky, difficult, and sometimes impossible in the tropics. Several researchers report that when water buffaloes are allowed to wallow, their mud-coated skin seems to deter insect and tick ectoparasites and they consequently require greatly reduced treatment with insecticides. Although the buffalo fly (Siphona exigua) affects the animals, other pests such as the warble fly and the screwworm, for example, seldom affect healthy buffaloes. AIso, despite their inclination for living in swamps, Avers, and ponds, diseases of the feet such as foot rot and foot abscesses are rare.

Another benefit to developing countries is the water buffalo's legendary strength. A large part of the total farm power available in South China, Thailand, Indonesia, the Philippines, the Indochina states, India, and Pakistan comes from this "living tractor." Dependable and docile, the animals pull plows, harrows, and carts with loads that weigh several tons. In the Amazon buffalo teams pull boats laden with cargo and tourists through shallows and swamps.

The petroleum crisis has forced many farmers to reconsider animal power even in some of the technically advanced countries. Buffaloes are not only extraordinarily strong, they can also work in deep mud that may bog down a tractor. Even up to their bellies they forge on, dragging both plow and driver through the mud. Although its average walking speed is only about 3 kilometers per hour, the buffalo, unlike its mechanical competition, doesn't need gasoline or spare parts and its working life is often 20 years or more.

 

Breeds

As already noted, the major genetic divisions of the water buffalo are the Swamp buffalo of the eastern half of Asia, which has swept-back horns, and the River buffalo of the western half of Asia, which usually has curled horns. There is also the Mediterranean buffalo, which is of the River type but has been isolated for so long that it has developed some unique characteristics. (Records of the buffalo in Italy date back 1,000 years, during which there have been no reported imports.) Mediterranean buffaloes are stocky, high yielding animals that combine both beef and dairy characteristics.

Although there is only one breed of Swamp buffalo, certain subgroups seem to have specific inherited characteristics. For example, the buffaloes of Thailand are noted for their large size, averaging 450-550 kg, and weights of up to 1,000 kg have been observed. Elsewhere, Swamp buffaloes range from 250 kg for some small animals in China to 300 kg in Burma and 500-600 kg in Laos.

Only in India and Pakistan are there well-defined breeds with standard qualities. There are eighteen River buffalo breeds in South Asia, which are further classified into five major groups designated as the Murrah, Gujarat, Uttar Pradesh, Central Indian, and South Indian breeds. These are the five groups and main breeds:

Group

Breeds

Murrah

Murrah, Nili/Ravi, Kundi

Gujarat

Surti, Mehsana, Jafarabadi

Uttar Pradesh

Bhadawari, Tarai

Central Indian

Nagpuri, Pandharpun, Manda, Jerangi, Kalahandi, Sambalpur

South Indian

Toda, South Kanara

The best-known breeds are Murrah, Nili/Ravl, Jafarabadi, Surti, Mehsana, and Nagpuri. Most of the buffaloes of the Indian subcontinent belong to a nondescript group known as the Desi buffalo. There is no controlled breeding among these animals and most are quite small, yield little milk, and are variable in color.

 

Genetics

The Swamp buffalo has 48 chromosomes, the River buffalo, 50. The chromosomal material is, however, similar in the two types and they crossbreed to produce fertile hybrid progeny. Cattle, however, have 60 chromosomes and although mating between cattle and buffaloes is common, hybrids from the union are unlikely to occur.( In 1965 a reputed hybrid was born at Askaniya Nova Zoopark in the Soviet Union (see Gray, A., 1971. Mammalian Hybrids, Commonwealth Agricultural Bureaux, Slough, England, p. 126). Hybrids have also been reported from China (Van Fu-Czao 1959, Gibridy buivolc i krupnogo i rogatogo skota(buffalo and cattlehybrids)Zhivotnovodstro, Mosk., 21:92). Both of these reports seem doubtful because despite many attempts, no other hybrids have ever been claimed to have been produced).

Individual buffaloes show large variation in milk yield, conformation, horn shape, color, meat production, temperament, growth rate, and other characteristics. Selection for survival under adverse conditions has occurred naturally (those that could not stand adversity died early) and farmers have probably tended to select animals of gentle temperament. But systematic genetic improvement has almost never been attempted. It seems likely that further selection could quickly improve their productivity.

Unfortunately, the large bulls that would be best for breeding purposes are often being selected as draft animals and castrated, or sent to slaughter, or (as with some feral animals in northern Australia and on the Amazon island of Marajo) shot by hunters. The result is that the buffalo's overall size in countries such as Thailand and Indonesia has been decreasing as the genes for large size and fast growth are lost.

 

Limitations

The buffalo is still largely an animal of the village, and many of its reported limitations are caused more by its environment than by the animal itself. Moreover, much of the animal's genetic potential is obscured by environmental influences. For example, for many breeds and types the genetic variations in milk yield and growth cannot be accurately determined because they are overwhelmed by the effects of inadequate nutrition and management.

Nevertheless, some inherent limitations of buffaloes can be identified. For instance, buffaloes suffer if forced to remain, even for a few hours, in direct sunlight. They have only one-tenth the density of sweat glands of cattle and their coating of hair is correspondingly sparse, providing little protection from the sun. Accordingly, buffaloes must not be driven over long distances in the heat of the day. They must be allowed time for watering and, if possible, for wallowing. Driving under a hot sun for long hours will cause heat exhaustion and possibly death; losses can be very high and can occur suddenly. Young calves are particularly affected by heat.

Buffaloes are also sensitive to extreme cold and seem less able than cattle to adapt to truly cold climates(A rule of thumb is that buffaloes don't do well where the sun is inadequate to ripen, say, cotton, grapes, or Ace. Kaleff, B., 1942. Der Hausbuffel und seine Zuchtungsbiologie im Vergleich zum Rind. Zeitschsift Tierzucht Biologze, 51:131-178). Sudden drops in temperature and chill winds may lead to pneumonia and death.

The water buffalo is usually found m areas where there is ready access to a wallow or shower. This is not a necessity, but when temperatures are high the availability of water is important for maintaining buffalo health and productivity. It seems clear, then, that the buffalo is not suitable for arid lands.

Increasing buffalo productivity through breed improvement is just now beginning. Throughout Asia buffalo mating is almost completely haphazard, and so the animal lacks the quality improvement through breeding that most cattle have had. Therefore, most buffaloes are of nondescript heritage and genetic potential.

On poor quality feed water buffalo grow at least as well as cattle, but under intensive conditions they probably won't grow as fast as the best breeds of cattle. In feedlots, therefore, the buffalo is likely to be less productive than improved cattle. Weight gains of about 1 kg per day have been recorded, some exceptional cattle may gain at almost twice that rate.

The buffalo has long been considered a poor breeder-slow to mature sexually, and slow to rebreed after calving. Accumulated experience now shows, however, that this is mainly a result of poor management and nutrition. Buffaloes are not sluggish breeders. Nevertheless, their gestation period is about a month longer than that of cows, buffalo estrus is difficult to detect, and many matings occur~at night so that~ farmers are likely to encounter more problems breeding buffaloes than cattle.

Buffaloes are gentle creatures, but if roughly or inexpertly handled they can, through fear or pain, become completely unmanageable. Buffalo behavior sometimes differs from that of cattle. For example, most buffaloes are not trained to be driven. Instead, the herdsman must walk alongside or ahead of them; they then instinctively follow. Also, because of their innate attachment to an individual site or herd it is more difficult to move buffaloes to new locations or herds. In addition, buffaloes respect fences less than cattle do and when they have the desire to move they are harder to contain. (Electric fences, however, will stop them.)

Despite their general good health, buffaloes are probably as susceptible as cattle to most infections. However, the buffalo seems to be peculiarly sensitive to a few cattle diseases and resistant to a few others (see chapter 7). Reactions to some diseases seem to vary with region, environment, and breed, and the differences are not well understood.

Destruction of the environment is sometimes attributed to buffalo wallowing. This danger seems to have been overstated, except in cases where stocking rates were unreasonably high.(An ongoing study in Northern Australia of environmental degradation widely attributed to buffalo has now shown that the effects are caused by man and climatic changes and only very slightly by buffaloes. (information supplied by D. G. Tulloch.) ) However, buffaloes rub against trees more often than cattle do, and they sometimes de-bark the trees, causing them to die.

Unfortunately, some of the best genetic stocks of water buffaloes exist in areas where certain infections and viral and other diseases sometimes occur. Thus, many countries are reluctant to permit importation of water buffaloes, despite the fact that modern quarantine procedures under conditions of maximum security can essentially eliminate the risk.

Finally, it must be emphasized that because buffalo research has been largely neglected, most results reported in this and other buffalo writings cover small numbers of animals and short periods of time. Many are merely empirical observations that have not been subjected to independent confirmation.

 

Selected Readings

Anonymous. 1972.Buffalo at the crossroads. World Farming 14(n:l0-l3.

Asian and Pacific Council. 1979. Priorities in buffalo research identified.ASPAC News letter No. 43.

Bowman, J. c. 1977. Animals for Man. Edward Arnold Publishers, Ltd., London, United Kingdom.

Buffalo Bulletin. Newsletter published by the Buffalo Research Committee of Kasetsart University, Bangkok' Thailand. (In English and Thai.)

Buffalo World. Newsletter published by the National Dairy Research Institute, Karnal, 132001, Haryana, India.

Chantalakhana, C. 1975. The buffaloes of Thailand-their potential, utilization and conservation. In: The Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6, 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.

Chantalakhana, C., and Na Phuket, S. R. 1979. The role of swamp buffalo in small farm development and the need for breeding improvement in Southeast Asia. Extension Bulletin No. 125. Food and Fertilizer Technology Center, Taipei, Taiwan.

Cockrill, W. R. 1967. The water buffalo. Scientific American 217:118.

Cockrill, W. R., ed. 1974. The Husbandry and Health of the Domestic Buffalo. Food and Agriculture Organization of the United Nations, Rome, Italy.

Cockrill W. R. 1975. The domestic buffalo. Blue Book for the Veterinary Profession No. 25. Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy.

Cockrill, W. R. 1976. The Buffaloes of China. Food and Agriculture Organization of the United Nations, Rome, Italy.

Cockrill, W. R., ed. 1977. The Water Buffalo. Food and Agriculture Organization of the United Nations, Rome, Italy.

Cockrill, W. R. 1977. The water buffalo: domestic animal of the future. Bovine Practitioner 12:92-98.

Cockrill, W. R. 1978. Domestic water buffaloes. In: The Care and Management of Farm Animals, edited by W. N. Scott. Bailliere TindaU, London, United Kingdom.

Cockrill, W. R. 1980. The ascendant water buffalo-key domestic animal. World Animal Review 33:2-13.

DeBoer, A. J. 1972. Technical and economic constraints on bovine production in three villages in Thailand. Dissertation Abstracts International 33(5):1935.

DeBoer, A. J. 1975. Livestock and Poultry Industry in Selected Asian Countries. Report of Survey on Diversification of Agriculture: Livestock and Poultry Production. Asian Productivity Organization, Tokyo, Japan.

de Guzman, M. R., Jr. 1979. An overview of recent developments in buffalo research and management in Asia. Extension Bulletin No. 124. Food and Fertilizer Technology Center, Taipei, Taiwan.

Documentation Center on Water Buffalo. 1978. Abstract Bibliography on Water Buffalo, 1971-1975. Documentation Center on Water Buffalo, University of the Philippines at Los Banos Library, College, Laguna 3720, Philippines.

Fahimuddin, M. 1975. Domestic Water Buffalo. Oxford and IBH Publishing Company, New Delhi, India

Fischer, H. 1975. The water buffalo and related species as important genetic resources: their conservation, evaluation and utilization. In: The Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.

Ford, B. D., and Tulloch, D. G. 1977. The Australian buffalo-a collection of papers. Technical Bulletin No.18. Department of the Northern Territory, Animal Industry and Agriculture Branch, Australian Government Publishing Service, Canberra, Australia.

Gupta, H. C. 1977. Possibilities and realities of developing buffalo's performance, breeding and feeding. Indian Dairyman 29(6):337-346.

Kartha, K. P. R.1965. Buffalo. In: An Introduction to Animal Husbandry in the Tropics edited by G. Williamson and W. J. A. Payne. Longman, London, United Kingdom.

McKnight, T. L. 1971. Australia's buffalo dilemma. Annals of the Association of American Geographers 61(4):759-773.

Madamba, J. C., and Eusebio, A. N. 1979. Developments in the strengthening of buffalo research in Asia. Buffalo Bulletin 2(3):7-16.

Mahadevan, P. 1978. Water buffalo research-possible future trends. World Animal Review 25: 2-7.

Oloufa, M. M. 1979. Buffaloes as producers of meat and milk. Egyptian Journal of AnimalProduction 19:1-10.

Pant, H. C., and Roy, A. 1972. The water buffalo and its future. In: Improvement of Livestock Production in Warm Climates, edited by R. E McDowell. W. H. Freeman and Company, San Francisco, California, USA.

Philippine Council for Agriculture and Resources Research. 1978. The Philippines Recommends for Caraboo Production, PCARR, Los Banos, Laguna 3732, Philippines.

Ranjhan, S. K., and Pathak, N. N. 1981. Management and Feeding of Buffaloes. Vikas Publishing House, New Delhi, India

Robinson, D. W. 1977a. Livestock in Indonesia. Research Report No. 1. Centre for Animal Research and Development, Bogor, Indonesia. (In English and Indonesian.)

Robinson, D. W. 1977b. Preliminary Observations on the Productivity of Porking Buffalo in Indonesia. Research Report No. 2. Centre for Animal Research and Development, Bogor, Indonesia. (In English and Indonesian.)

Sundaresan, D. 1979. The role of improved buffaloes in rural development. Indian Dairyman 31(2):73-78.

Tulloch, D. G. 1978. The water buffalo, Bubalus bubalis, in Australia: grouping and home range.Australian Wildlife Research 5:327-34.

Wahid, A. 1973. Pakistani buffaloes. World Animal Review 7:22~28.